Quantitative and Localization Fault Diagnosis Method of Rolling Bearing Based on Quantitative Mapping Model

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A DWT and SVM based method for rolling element bearing fault diagnosis and its comparison with Artificial Neural Networks

A classification technique using Support Vector Machine (SVM) classifier for detection of rolling element bearing fault is presented here.  The SVM was fed from features that were extracted from of vibration signals obtained from experimental setup consisting of rotating driveline that was mounted on rolling element bearings which were run in normal and with artificially faults induced conditio...

متن کامل

Study on A Fault Diagnosis Method of Rolling Element Bearing Based on Improved ACO and SVM Model

The vibration signal is nonstationary and it is difficult to acquire the sample with typical fault. An improved ACO algorithm based on adaptive control parameters is introduced into SVM model to propose a new fault diagnosis (IMASFD) method in this paper. In the IMASFD method, the EMD method is used to decompose fault vibration signal into IMF components, the energy of IMF components is selecte...

متن کامل

Diagnosis of patients with Parkinson's disease using quantitative susceptibility mapping

Introduction: Parkinson'sdisease isassociated withirondeposition in the brain. The T2-weighted imaging, T2* mapping, R2 mapping and Quantitative Susceptibility Mapping (QSM) are three common methods to evaluating the iron deposition in brain. Among three methods the QSM is more sensitive than others. Few studies have been used QSM for evaluating the iron deposition in the basa...

متن کامل

Fault Diagnosis Method Based on a New Supervised Locally Linear Embedding Algorithm for Rolling Bearing

In view of the complexity and nonlinearity of rolling bearings, this paper presents a new supervised locally linear embedding method (R-NSLLE) for feature extraction. In general, traditional LLE can capture the local structure of a rolling bearing. However it may lead to limited effectiveness if data is sparse or non-uniformly distributed. Moreover, like other manifold learning algorithms, the ...

متن کامل

Feature Extraction Method of Rolling Bearing Fault Signal Based on EEMD and Cloud Model Characteristic Entropy

The randomness and fuzziness that exist in rolling bearings when faults occur result in uncertainty in acquisition signals and reduce the accuracy of signal feature extraction. To solve this problem, this study proposes a new method in which cloud model characteristic entropy (CMCE) is set as the signal characteristic eigenvalue. This approach can overcome the disadvantages of traditional entro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Entropy

سال: 2018

ISSN: 1099-4300

DOI: 10.3390/e20070510